Частоты аллелей
Генофонд локальной популяции обычно содержит помимо мономорфных различные полиморфные гены. В каждом данном поколении аллельные формы полиморфных генов представлены с некоторой определённой частотой. Так, например, ген А, имеющий два аллеля, А и а, может быть представлен в генофонде одного поколения в соотношении 70% аллелей А и 30% аллелей а. Каковы в таком случае будут ожидаемые частоты аллелей в следующем поколении? [3]
В популяции диплоидного организма эти аллели содержатся в гомозиготных и гетерозиготных генотипах АА, аа и Аа, которые будут встречаться в определённых соотношениях в любом данном поколении. Они служат родительскими генотипами для следующего поколения. В связи с этим возникает вопрос: каковы ожидаемые соотношения генотипов во втором и в последующих поколениях?
Ожидаемые частоты аллелей и генотипов можно определить по закону Харди — Вайнберга. Этот закон действует при следующих условиях. Предполагается, что популяция достаточно велика, для того чтобы ошибки выборки не оказывали существенного влияния на частоты в последовательных поколениях. Популяция изолирована, иммиграция отсутствует, составляющие популяцию особи вносят равное число функционирующих гамет; иными словами, разные генотипы размножаются одинаково успешно. И наконец, предполагается, что в популяции преобладает случайное скрещивание. Случайное скрещивание, или панмиксию, можно с равным успехом определять в терминах особей или в терминах гамет. Если иметь в виду особей, то случайное скрещивание происходит в тех случаях, когда особи с различной генетической конституцией скрещиваются независимо от своих генотипов. Например, самка с генотипом АА может скрещиваться с самцами АА, Аа или аа, не проявляя никакого предпочтения к самцам какого-то одного типа.
Панмиксию можно определить точнее, если исходить из наличия в гаметном фонде множества гамет. В этом смысле случайное скрещивание означает, что любая женская гамета с одинаковой вероятностью может быть оплодотворена мужской гаметой любого типа и что эта вероятность прямо пропорциональна частоте мужских гамет данного типа в гаметном фонде. Короче говоря, гаметы, несущие разные аллели, соединяются в пары пропорционально их относительным частотам в гаметном фонде. Особи, составляющие популяцию в каждом данном поколении, представляют собой в таком случае произведения разных пар гамет, случайно извлеченных из гаметного фонда предшествующего поколения.
В популяции, соответствующей указанным выше условиям, согласно закону Харди — Вайнберга, частоты аллелей будут оставаться постоянными из поколения в поколение, и при случайном скрещивании в одном поколении генотипы достигнут равновесных частот, которые сохранятся в дальнейшем. Например, закон постоянства частот аллелей мы проиллюстрируем количественным примером. Допустим, что популяция некоего диплоидного вида, полиморфного по гену А, в исходном поколении содержит разные генотипы в следующем соотношении: 60% АА, 20% Аа и 20% аа. Проследим за аллелями А на протяжении двух поколений.
1. Частоты аллелей в первом поколении. Поскольку частоты генотипов заданы как 0.60 AA + 0.20Aa + 0.20 aa, частоты аллелей (q) в этом поколении должны составлять qA = (0.60 + 0.60 + 0.20) \ 2 = 0.70, а qа = (0.20 + 0.20 + 0.20) \ 2 = 0.30.
2. Гаметный фонд первого поколения. Предполагается, что все особи одинаково плодовиты, поэтому диплоидные особи будут производить гаплоидные гаметы в соотношении 70% А и 30% а. Частоты аллелей в гаметном фонде такие же, как и в исходном генофонде. [3]
3. Случайное скрещивание. Гаметы для образования зигот второго поколения извлекаются из фонда случайным образом; при этом возможны также попарные сочетания;
Женские гаметы |
Мужские гаметы | |
0.70 A |
× |
0.70 A |
0.70 A |
× |
0.30 a |
0.30 a |
× |
0.70 A |
0.30 a |
× |
0.30 a |
4. Частоты зигот во втором поколении. Приведенная выше система свободного скрещивания даёт следующие результаты:
0.49 АА; 0.21 + 0.21 = 0.42 Аа; 0.09 аа.
Считается, что все зиготы обладают одинаковой жизнеспособностью; следовательно, приведённые цифры дают ожидаемые равновесные частоты генотипов во втором поколении.
Можно заметить, что данная популяция не находилась в равновесии в отношении частот генотипов в первом поколении, но достигла равновесного состояния в результате свободного скрещивания всего лишь в одном поколении;
5. Частоты аллелей во втором поколении. Генофонд второго поколения, очевидно, будет содержать два аллеля со следующими частотами:
А = ( 0.49 + 0.49 + 0.42) \ 2 = 0.70, а = (0.42 + 0.09 + 0.09) \ 2 = 0.30.
Таким образом, частоты аллелей во втором поколении такие же, какими они были в первом поколении. [3]
Другие статьи:
Родительская семья как модель формирования
жизненного стиля ребенка
Семья для ребенка - это место рождения и основная среда обитания. В семье у него близкие люди, которые понимают и принимают его таким, какой он есть. Именно в семье ребенок получает азы знаний об окружающем мире, а при высоком культурном ...
Особенности формирования коммуникативных навыков у младших школьников
Формирование коммуникативных умений младших школьников - чрезвычайно актуальная проблема, так как степень сформированности данных умений влияет не только на результативность обучения детей, но и на процесс их социализации и развития лично ...
Влияние темперамента на организацию творчества
Термин «творчество» указывает и на деятельность личности, и на созданные ею ценности, которые из фактов ее персональной судьбы становятся фактами культуры.
Научно-психологическому анализу открыто нечто совсем иное: способы ее восприятия, ...